
Chapter 14

A Comparative Analysis of Models
for West Nile Virus

M.J. Wonham and M.A. Lewis

Abstract This chapter describes the steps needed to formulate, analyze and
apply epidemiological models to vector-borne diseases. Our models focus on
West Nile (WN) virus, an emerging infectious disease in North America, first
identified in Africa. We begin by introducing a minimalist model for WN
dynamics to illustrate the processes of model formulation, analysis, and ap-
plication. We then revisit the question of model formulation to examine how
two major biological assumptions affect the model structure and therefore its
predictions. Next, we briefly compare these different model structures in an
introductory exercise of model parameterization, validation, and comparison.
Finally, we address model applications in more detail with two examples of
how the model output can usefully be connected to public health applications.

14.1 Introduction: Epidemiological Modeling

Investigating and controlling infectious diseases is a complex enterprise that
has long been assisted by mathematical modeling (e.g., [2, 23]). In now clas-
sic examples, key insights into the dynamics of malaria, influenza, measles,
and other infectious diseases have emerged from epidemiological model-
ing [26, 33, 39]. Today, emerging and re-emerging infectious diseases such as
HIV/AIDS, SARS, feline immunodeficiency virus, hoof and mouth, and plant
fungi and viruses pose major challenges in public health, wildlife, and agri-
cultural management realms. The increase in outbreak frequency of these dis-
eases demands a rapid and effective management response [9–11, 14, 16, 18].
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Happily, there are many well-developed mathematical tools for effectively
studying disease dynamics. There remain, however, continuing and exciting
challenges in both formulating and analyzing biologically relevant disease
models.
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Fig. 14.1 Cartoon of the model development process from an initial question through
model formulation and analysis to the generation of further questions

Developing and applying a disease model, as indeed any model, typically
follows a series of steps (Fig. 14.1). An initial disease observation prompts
questions such as how fast the disease will spread, or how best the outbreak
can be controlled. From the initial question, we first define the scope and
assumptions of the problem and develop a conceptual hypothesis (1), This
is then formulated as a mathematical expression (2), which is parameterized
(3), validated and compared (4), analysed (5), and finally applied and used
to generate predictions (6), In this view, mathematical modeling follows the
familiar scientific method. The model is essentially a formalization of a hy-
pothesis that must be defined (steps 1–2) and tested (steps 3–4) before being
used to answer questions or generate predictions (steps 5–6).

If we are lucky, the model’s predictions shed light on the original ques-
tion. They will also likely generate new questions and hypotheses to be ad-
dressed by further data collection and a subsequent return to modeling. In
this chicken-and-egg fashion, our understanding of disease dynamics develops
as empirical study informs modeling which in turn informs further empirical
investigation.

The focus of this chapter is primarily on the steps of model formulation
(steps 1–2) and model application (step 6) for infectious diseases. Model
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parameterization, validation, and comparison (steps 3–4) would readily fill
another chapter, so we will restrict ourselves to a brief introduction to these
important topics and provide references to more detailed resources. The
mathematical analysis (step 5) of disease models in general is well treated in
this book and elsewhere, so we will keep this aspect to a relative minimum.

We will focus our discussion on one particular type of epidemiological
models, the well-studied S − I or Susceptible-Infectious models. These com-
partmental models, descended from the work of [26], use the dynamics of
interactions between S and I individuals to model the rate of emergence of
new infectious individuals.

Many excellent texts introduce the philosophy and tools of mathemat-
ical modeling in infectious disease systems. For a general presentation of
mathematical modeling in biological systems, we find those by [8, 20, 27, 35]
particularly helpful. For modeling infectious diseases in particular, [2, 6, 12],
provide excellent overviews and detailed examples. For the philosophy and
methodology of model selection using maximum likelihood, we refer to [7,25].

14.2 Case Study: West Nile Virus

Our model formulation and application center around the example of West
Nile virus (WN), an emerging infectious disease in North America. WN was
first identified in Uganda in 1947, and is widespread in Africa, the Middle
East, and Western Asia. Occasional European outbreaks are introduced by
migrating birds [21, 38]. In North America, the first recorded epidemic was
detected in New York State in 1999 and spread rapidly across the continent.
The unprecedented level of bird, horse, and human mortality was attributed
to a highly virulent emerging strain of the virus [1, 36].

WN is characterized as an arboviral encephalitis, a designation that refers
to its mosquito (arthropod) vector, its viral pathogenic agent, and its en-
cephalitic symptoms. The disease amplifies in a transmission cycle between
vector mosquitoes and reservoir-host birds, and is secondarily transmitted
to mammals including humans [4,19,37]. The North American outbreak has
been exceptionally well documented at mosquito, bird, and human levels,
making it a prime candidate for mathematical analysis.

We will begin by introducing a minimalist model for WN dynamics to illus-
trate the processes of model formulation, analysis, and application. We will
then revisit the question of model formulation to examine how two major bi-
ological assumptions affect the model structure and therefore its predictions.
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Next, we will briefly compare these different model structures in an introduc-
tory exercise of model parameterization, validation, and comparison. Finally,
we will address model applications in more detail with two examples of how
the model output can usefully be connected to public health applications.

14.3 Minimalist Model

14.3.1 The Question

It is not often we see a dead bird outdoors in an urban setting. If we had
lived in New York City in the summer of 1999, however, we would have been
astonished by the unusually high number of dead crows, blue jays, and other
birds found in backyards and parks. Later that year, we would have learned
that the cause of death was a newly introduced disease, West Nile virus, that
was carried by mosquitoes and was killing birds and humans [1, 28]. With
those initial reports, we might have begun to ask any number of important
questions. How would the disease affect bird populations? How infectious
would it be in humans? How fast would it spread from New York to other
locations? Would it spread to other animals as well? Was it carried by all
mosquito species? Did they transmit it in every bite? How could the disease be
controlled? Would mosquito spraying help? Would culling the bird population
help?

Some of these questions would best be addressed in field and laboratory
studies, others with mathematical modeling, and yet others with both ap-
proaches. For now, we will focus on the key question of how best to control
a WN outbreak, and take advantage of empirical studies to inform and test
our mathematical modeling.

14.3.2 Model Scope and Scale

To formulate a WN disease model , we must make some decisions about its
scope and scale. Specifically, we need to think about the model’s goals and
complexity, and about how to represent time, space, population structure,
and natural variation.

In terms first of model goals, are we interested in a more strategic model
that simplifies the system to its barest essentials, or a more tactical model
with comparatively more detail and complexity [29]? Model choice influences
the kind of analysis we can conduct: generally speaking, a simpler model
will be more amenable to analytical or more general analysis, whereas a
more complex model will be restricted to numerical, or more specific case
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study analysis. Thus, the strategic approach may provide more qualitative
insight into the basic properties of a system, whereas the tactical approach
may provide better predictive ability for given species in a given location.
Choosing a strategic philosophy is useful at this stage for studying general
WN dynamics and control; later we might be interested in a more tactical
model of local dynamics in a particular location. Our choice of a strategic
or bare bones approach will help inform the remaining decisions about the
model scale and scope.

Second, how should we model time and space? Mosquito and bird popula-
tion dynamics exhibit an annual cycle, so we might consider a discrete-time
model with yearly increments. But since we saw a very rapid disease increase
in New York City within one summer, it might be interesting to focus on
the shorter-term dynamics of a single season. This would allow us to ignore
bird vital dynamics, and would require a model mosquito population that
reproduces throughout the season. We thus choose a continuous time model
that can be formulated as a system of ordinary differential equations (ODEs).
For a more detailed discussion of continuous vs. discrete time models of WN
virus, see [31]. Since our focal question is not explicitly spatial, we will con-
sider only the changes in populations over time, giving us a nonspatial model.
For some spatial approaches to modeling WN, see [30,32].

Third, how should we represent the mosquito and bird populations? We
could treat them in an individual-based framework, in age or stage classes,
or as a homogeneous population. In the interests of strategy, we will think
of them simply as homogeneous populations of identical individuals that can
be represented by a single equation for all ages and stages. (We will revisit
this choice in Sect. 14.5.) WN has been reported thus far from ∼60 mosquito
species and ∼280 bird species in North America. Again for strategy, we will
model only a single generic mosquito and a single generic bird species, ac-
knowledging that this limits our ability to address broader scale ecological
questions in WN dynamics (e.g., [14, 17]). Furthermore, since mammals (in-
cluding humans) appear not to transmit the disease back to the mosquito
population, they are considered secondary hosts [4, 19, 24, 37], so the funda-
mental disease dynamics do not depend on them. Our model will therefore
represent only the mosquito and bird populations.

Finally, are we interested in a stochastic model that can capture the nat-
ural variation in model parameters such as birth, death, and infection rates?
Or are we interested in a more deterministic model that forsakes the vagaries
of realism in favour of clearer, but simplified, analytical results? Given our
strategic focus, we will develop a deterministic model. (In the interests of
interpreting and applying the model output, however, we will examine the
effects of stochastic variation on model predictions in Sect.14.4.3.)
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14.3.3 Model Formulation

We have now decided to develop a strategic, continuous-time, single-season,
nonspatial, non age-structured deterministic model of WN dynamics. With
our adjectives thus in place, we can begin to sketch out the model structure.

We have already chosen to use the well-established S − I epidemiological
modeling framework, in which bird and mosquito populations will be divided
into classes of susceptible and infectious individuals. We thus have four classes
representing the densities of susceptible birds (SB), infectious birds (IB),
susceptible mosquitoes (SM ), and infectious mosquitoes (IM ) (Fig. 14.2a).
Susceptible birds can become infectious when they are bitten by an infectious
mosquito; susceptible mosquitoes can become infectious when they bite an
infectious bird. For the bird lifecycle, which is one to two orders of magnitude
longer than the single season represented by the model, birth and death rates
can reasonably be omitted. The mosquito lifecycle, which has length of order
one month, is represented by birth and death rates. Since birds die from
WN infection, but mosquitoes do not, we include a disease-death rate for
birds. This model (Fig. 14.2a) can be expressed as a system of four ordinary
differential equations,

dSB

dt︸︷︷︸
Susceptible
birds

= − αBβB
SB

NB
IM

︸ ︷︷ ︸
disease transmission

dIB

dt︸︷︷︸
Infectious
birds

= αBβB
SB

NB
IM

︸ ︷︷ ︸
disease transmission

− δBIB︸ ︷︷ ︸
death from
disease

dSM

dt︸ ︷︷ ︸
Susceptible
mosquitoes

= bMNM︸ ︷︷ ︸
birth

− αMβB
IB

NB
SM

︸ ︷︷ ︸
disease transmission

− dMSM︸ ︷︷ ︸
death

dIM

dt︸ ︷︷ ︸
Infectious
mosquitoes

= αMβB
IB

NB
SM

︸ ︷︷ ︸
disease transmission

− dMIM︸ ︷︷ ︸
death

(14.1)

where the total bird population density NB = SB + IB and the total adult
female mosquito population density NM = SM +IM . At the disease-free equi-
librium (DFE), where all individuals are susceptible, the bird and mosquito
population densities are denoted N∗

B and N∗
M , respectively. We assume that,

at the DFE, the mosquito population is constant so the birth and death
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rates are balanced and bM = dM . The model variables and parameters are
further defined in Tables 14.1 and 14.2. The disease-transmission dynamics
used in this model are known as frequency-dependent. In the Sect. 14.4, we
define this term more fully and compare the effects of modeling different
transmission dynamics.
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Fig. 14.2 Conceptual model for West Nile disease dynamics in mosquitoes and birds for
(a) the minimalist model with only four population classes (14.1) and (b) a slightly more

biologically complex and realistic model with two added mosquito compartments (14.9).

Vital and epidemiological dynamics indicated with solid lines and transmission dynamics

with dashed lines. Variables and parameters are defined in Tables 14.1 and 14.2. Adapted

from [43] Fig. 1
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14.3.4 Model Analysis

One of the most powerful tools developed for analyzing and interpreting
epidemic models is the disease basic reproduction number, R0 [2, 15, 22, 23].
Conceptually, R0 is defined as the average number of secondary infections
caused by the introduction of a typical infective individual into an otherwise
entirely susceptible population [2, 22]. Mathematically, R0 is defined as the
spectral radius of the next generation matrix for new infections [13,42].

The reproduction number serves as an invasion threshold for predicting
disease outbreaks and evaluating control strategies. Quantitatively, it has a
threshold value of one. When R0 < 1, the DFE is locally stable and the
introduction of a small number of infectious individuals will not lead to a
disease outbreak. When R0 > 1 the DFE is unstable and an outbreak will
occur. The analytical expression for R0 is also very useful, since it indicates
which elements of the disease system can be manipulated to reduce the chance
of an outbreak.

To obtain R0 for model (14.1), we follow [42] in using vector notation to
rewrite the equations in which infections appears as the difference between
fj , the rate of appearance of new infectives in class j, and vj , the rate of
transfer of individuals into and out of class j by all other processes. New
infectives arise in IB and IM only, giving

d

dt

[
IB

IM

]

= f − v =

[
αBβB

SB

NB
IM

αMβB
IB

NB
SM

]

−
[

δBIB

dMIM

]

. (14.2)

The corresponding Jacobian matrices, F and V , describe the linearization
of this reduced system about the DFE (where SM = N∗

M and SB = N∗
B),

F =

[
0 αBβB

αMβB
N∗

M

N∗
B

0

]

, V =
[

δB 0
0 dM

]

, (14.3)

giving the next generation matrix,

FV −1 =

[
0 αBβB

dM
αM βBN∗

M

δBN∗
B

0

]

. (14.4)

The spectral radius, or spectral bound, of FV −1 is the reproduction
number,
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R0 =
√

αBβB

dM︸ ︷︷ ︸
mosquito
to bird

√
αMβBN∗

M

δBN∗
B

︸ ︷︷ ︸
bird to

mosquito

. (14.5)

The R0 expression in (14.5) consists of two elements under the square root
sign. The first represents the number of secondary bird infections caused
by one infected mosquito. The second represents the number of secondary
mosquito infections caused by one infected bird. Taking the square root gives
the geometric mean of these two terms, which can be interpreted as R0 for
the addition of an average infectious individual, whether mosquito or bird,
to an otherwise susceptible system [41].

14.3.5 Model Application

The minimalist WN model (14.1) is a neat, simple, compact model for the
disease dynamics in mosquitoes and birds. What we do not know is if this
model is any good at capturing empirically observed WN dynamics. This
important question will be addressed in the processes of model parameteri-
zation, validation, and comparison, to which we will return in Sect. 14.6. For
simplicity of presentation, however, we will first consider how this model –
assuming it is a good one – might be applied.

Given our model, what is the best strategy for controlling a WN outbreak?
In the expression for R0 (14.5), we can find the answer. The goal for reducing
the chance of a WN outbreak is to reduce R0, which can be accomplished
by reducing the mosquito density at the DFE, N∗

M . In contrast, reducing
the bird density N∗

B will increase R0 and therefore increase the chance of
outbreak. What is the explanation for this puzzling result? Although it seems
counterintuitive at first, we can see that reducing the bird density means the
remaining individuals are bitten more often by hungry mosquitoes. In this
way, the disease transmission is concentrated through a few highly-bitten
birds that are more likely to become infected, and to re-infect the mosquitoes.

By looking more closely at the R0 expression, we can determine how
much control is needed. Here the ratio of mosquitoes to birds at the DFE,
n∗

m = N∗
M/N∗

B , is the crucial feature. Setting R0 to its critical value of one
and rearranging the expression gives the threshold ratio of mosquito to bird
densities,

n̂∗
m = dMδB/αBαMβ2

B (14.6)

above which an outbreak can occur. Reducing the relative mosquito density
below this level will prevent an outbreak. The mechanics of applying this
strategy are described in more detail in Sect. 14.7. The structure and control
implications of R0 that we see here follow directly from the assumption in



374 M.J. Wonham and M.A. Lewis

model (14.1) of frequency-dependence disease transmission. In the next sec-
tion, we will see how the results differ when different transmission dynamics
are assumed.

14.4 Biological Assumptions 1:
When does the Disease-Transmission Term Matter?

The disease-transmission term in our WN mode represents the contact dy-
namics between mosquitoes and birds, which depend on the biting rate by a
mosquito. The term used to describe the biting rate in an S − I model typi-
cally takes one of two forms, frequency dependence or mass action [2, 3, 34].

14.4.1 Frequency Dependence

The commonly used frequency dependent transmission, shown in (14.1), fol-
lows [2] in assuming that the mosquito biting rate is saturated, and not lim-
ited by bird density. In other words, the biting rate by an individual mosquito
is constant across bird densities (Fig. 14.3a), and the biting rate experienced
by an individual bird increases with mosquito density (Fig. 14.3b). Under this
assumption, the biting rate by a mosquito is taken to be the maximal rate
allowed by the gonotrophic cycle, or, the minimum time required between
blood meals for a female to produce and lay eggs, or, the maximum possible
number of bites per day made by a single mosquito. This biting rate βB has
unit time−1.

These biological assumptions are captured in the mathematical formula-
tion of frequency dependence, in which the proportional bird densities appear
in (14.1). Near the disease-free equilibrium, where both populations are al-
most entirely susceptible (i.e., S∗

M = N∗
M , S∗

B = N∗
B , and IM and IB are very

small) the mosquito-to-bird transmission rate βBIMSB/NB depends only on
the biting rate, while the bird-to-mosquito transmission rate βBSMIB/NB

depends on the biting rate and also on the ratio of mosquito to bird densities
(as well as on the disease transmission probabilities αM and αB which for
simplicity are not shown here).

14.4.2 Mass Action

Another common disease transmission term is mass action (e.g., [3, 34]).
Mass action differs from frequency dependence in assuming that the mosquito
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Fig. 14.3 Different disease-transmission terms in the West Nile model assume different
biting rates (a–b) and lead to qualitatively different reproduction numbers, R0 (c–d) with
different numerical values (e–f). Biting rates are shown as (a) the number of bites per day
by a single mosquito as a function of bird density, and (b) the number of bites per day
on a single bird as a function of mosquito density, for the two disease-transmission terms,
frequency dependence FD and mass action MA. The maximum biting rate βB is reached
at the bird density denoted Ñ∗

B . The bird densities over which each transmission term
applies are indicated by the solid lines; using a term at an inappropriate bird density in the
dotted line regions will give misleadingly high or low R0 estimates (a,c). The reproduction
number R0 is shown as a function of (c) bird density and (d) mosquito density. At mid bird
densities (N∗

B = Ñ∗
B), the biting rates (a,b) and the R0 (c,d) of MA and FD coincide.

At higher bird densities (N∗
B > Ñ∗

B), the biting rate (a,b) and the R0 (c,d) of FD lie

below that of MA, whereas at lower bird densities (N∗
B < Ñ∗

B), they lie above (R0 for this
latter scenario not shown in d). For numerical R0 estimates, vertical dotted lines separate
regions of (e) low (N∗

B < Ñ∗
B), medium (N∗

B = Ñ∗
B), and high (N∗

B > Ñ∗
B) bird densities,

and (f) low, medium, and high mosquito densities. Sample population densities chosen to
illustrate these different regions of R0, expressed as number km−2, are (a) N∗

M
= 1,000,

Ñ∗
B = 100, and N∗

B = 50 (low), 100 (mid), and 500 (high), and (b) Ñ∗
B = 500, N∗

B =
550, and N∗

M = 100 (low), 550 (mid), and 5,500 (high). Parameter values as in Table 14.2.
Boxes show median and 25th and 75th percentiles, bars show 10th and 90th percentiles,
and dots show 5th and 95th percentiles. Adapted from [43] Fig. 2–3
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biting rate is limited by the densities of both mosquitoes and birds
(Fig. 14.3a,b). Mass action is a biologically sensible assumption only up to
some threshold bird density, denoted Ñ∗

B . We can understand this limit by
examining the disease transmission terms, which are written as β′

BIMSB

(mosquito to bird) and β′
BSMIB (bird to mosquito), again omitting the terms

αM and αB for clarity. The biting parameter β′
B = βB/Ñ∗

B has units time−1

density−1, and can be thought of as the number of bites per day made by a
single mosquito, per unit density of birds. Above Ñ∗

B , the mosquito biting rate
in units bites time−1, β′

BN∗
B , would exceed βB , and therefore by definition

would exceed the physiological capacity of the mosquito (Fig. 14.3a).
Replacing the frequency-dependence transmission in model (14.1) with

mass action transmission gives a different reproduction number, namely

R0 =

√
αBβ′

B

dM
︸ ︷︷ ︸
mosquito
to bird

√
αMβ′

BN∗
MN∗

B

δB
︸ ︷︷ ︸

bird to
mosquito

. (14.7)

In this case (14.7), R0 is sensitive not to the ratio, but to the absolute den-
sities of mosquitoes and birds. Thus, the model predicts that reducing either
mosquito or bird density will reduce R0 and reduce the chance of disease
outbreak (Fig. 14.3c,d). In terms of the bird population, this prediction is
opposite to that of frequency dependence. Setting R0 = 1 gives the mosquito
density threshold for WN outbreak under mass action,

N̂∗
M = dMδB/αBαM (β′

B)2N∗
B . (14.8)

When the bird density at the DFE is N∗
B = Ñ∗

B , the biting rates under mass
action and frequency dependence coincide (Fig. 14.3a–b) and the R0 values
are equal (Fig. 14.3c–d). At lower bird densities where N∗

B < Ñ∗
B , the biting

rate and R0 of frequency dependence are artificially high, whereas at higher
densities where N∗

B > Ñ∗
B , it is those of mass action that are artificially high

(Fig. 14.3a,c). This is because the frequency-dependent formulation assumes
the maximal mosquito biting rate even when the bird density is very low, and
the mass action formulation assumes an impossibly high biting rate when the
bird density is very high.

We can see the same dynamics when we examine biting rates and R0 with
respect to mosquito density. As expected, the R0 curves for both transmission
terms coincide when N∗

B = Ñ∗
B (Fig. 14.3d, middle curve). At higher bird

densities (N∗
B > Ñ∗

B) the curve for frequency dependence is lower, but the
curve for mass action is higher because the maximal mosquito biting rate is
exceeded (Fig. 14.3d). In the opposite case of N∗

B < Ñ∗
B , the relative positions

of the two curves are reversed (not shown).
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14.4.3 Numerical Values of R0

The analytical results obtained above illustrate how the choice of disease-
transmission term can change R0, thus altering the model’s control im-
plications. Do these alterations translate into significant differences in the
numerical estimates of R0? To address this question, we generated quanti-
tative R0 estimates that incorporated the underlying variation in the con-
stituent model parameters (Table 14.2, Fig. 14.3e–f). For details of this
parameter estimation and resampling see [43]; an introduction to these meth-
ods is given in [5]. At low bird density where mass action applies, the R0

of frequency dependence can be significantly too high (Fig. 14.3e). At the
threshold bird density Ñ∗

B , where both mass action and frequency depen-
dence apply, the R0 value is the same. At higher bird density where fre-
quency dependence applies, the R0 of mass action is significantly too high
(Fig. 14.3e). Similar comparisons can be made for low, medium, and high
mosquito densities (Fig. 14.3f). These numerical results show that, for these
parameter values, a transmission term misapplied at an inappropriate host
or mosquito population density can significantly over- or underestimate R0.
For the remainder of the chapter, we will use the model formulation with
frequency-dependent transmission terms, as in (14.1).

14.5 Biological Assumptions 2: When do Added Model
Classes Matter?

The minimalist model (14.1) contains the fewest possible classes for bird and
mosquito populations. For mosquitoes in particular, this is a considerable
oversimplification of the lifecycle and epidemiology. What is the effect on the
model output of incorporating additional biologically realistic classes? We
will consider two candidate mosquito classes, and find that one influences R0

whereas the other does not.
The mosquito lifecycle includes larval and pupal stages, which may repre-

sent up to a quarter of the mosquito lifespan. Their inclusion might therefore
be expected to slow down the model dynamics. These pre-adult stages can be
added to the model as a combined Larval compartment LM , with associated
birth rate bL and maturation rate mL (Fig. 14.2b).

Empirical studies of infected mosquitoes show that they undergo a viral
incubation period during which they are infected, but not infectious. Only
when the virus reaches a sufficiently high concentration, and is disseminated
out of the gut and into the salivary glands, is the insect capable of trans-
mitting the disease. This incubation period lasts some 7–12 days and can be
modeled as an exposed compartment, EM , with associated incubation rate
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κM (Fig. 14.2b). These two compartments can be incorporated into the
model’s mathematical structure as follows:

dSB

dt︸︷︷︸
Susceptible
birds

= − αBβBIM
SB

NB︸ ︷︷ ︸
disease transmission

dIB

dt︸︷︷︸
Infectious
birds

= αBβBIM
SB

NB︸ ︷︷ ︸
disease transmission

− δBIB︸ ︷︷ ︸
death from
disease

dLM

dt︸ ︷︷ ︸
Larval
mosquitoes

= bL (SM + EM + IM )
︸ ︷︷ ︸

birth

− mLLM︸ ︷︷ ︸
maturation

− dLLM︸ ︷︷ ︸
death

dSM

dt︸ ︷︷ ︸
Susceptible
mosquitoes

= − αMβBSM
IB

NB︸ ︷︷ ︸
disease transmission

+ mLLM︸ ︷︷ ︸
maturation

− dMSM︸ ︷︷ ︸
death

dEM

dt︸ ︷︷ ︸
Exposed
mosquitoes

= αMβBSM
IB

NB︸ ︷︷ ︸
disease transmission

− κMEM︸ ︷︷ ︸
disease
incubation

− dMEM︸ ︷︷ ︸
death

dIM

dt︸ ︷︷ ︸
Infectious
mosquitoes

= κMEM︸ ︷︷ ︸
disease
incubation

− dMIM︸ ︷︷ ︸
death

(14.9)

where the total female mosquito density NM = (LM + SM + EM + IM ). For
this model, the assumption of a constant mosquito population at the DFE is
met by the parameter constraint that bL = dM (mL + dL)/mL.

Following a similar R0 analysis as that given above (14.2–14.5), we obtain

R0 =

√
√
√
√αBβBφM

dM

αMβB
N∗

M

N∗
B

δM
, (14.10)

where φM is the proportion of exposed mosquitoes surviving the exposed
period to become infectious, φM = κM/ (κM + dM ). As before, setting
R0 = 1 returns the critical relative mosquito density above which the virus
will invade a constant population of susceptible individuals,
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n∗
m = dMδB/αBαMβ2

BφM . (14.11)

By inspecting this R0 expression (14.10), we can see that the added ex-
posed class alters R0, reducing it by the fraction

√
φM . In contrast, the added

larval class does not influence R0. We can understand this curious result by
recalling the definition of R0, which applies only to the linearized system
around the DFE, and is calculated using only the equations for infected in-
dividuals. Recall too that R0 is simply a ratio and has no time scale, so
that although adding a larval compartment may delay the system’s dynam-
ics (see Sect. 14.6), it does not affect the average number of secondary infec-
tions caused by the introduction of an infectious individual into an otherwise
susceptible population – the definition of R0. The following section shows
how both the larval and exposed mosquito compartments can influence the
model’s numerical outbreak simulations.
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Fig. 14.4 Numerical model simulations showing the densities of (a) infectious mosquitoes,
(b) infectious birds, and (c) susceptible birds over time for the minimalist West Nile
virus model (solid line) and extensions with a larval mosquito class (dashed line), an
exposed mosquito class (dash-dot line), and both exposed and larval classes (dotted line).
Simulations run for 60 days with initial susceptible densities N∗

M = 1,500 and N∗
B = 100,

and a disease inoculum of IM (0) = 0.0001



380 M.J. Wonham and M.A. Lewis

14.6 Model Parameterization, Validation,
and Comparison

In the terms of the scientific method, formulating a model is the formal
equivalent of proposing a conceptual hypothesis. Applying a model without
testing it (as we did in Sect. 14.3) is like using a hypothesis to make predic-
tions before the hypothesis has been tested. As with hypotheses, evaluating
one model is good, but testing and comparing multiple models is even bet-
ter [7, 25]. The science of model testing – which includes parameterization,
validation, and multi-model comparison – is a highly developed statistical
enterprise with multiple approaches. One key approach is that of maximum
likelihood, which tests the relative abilities of multiple models to fit an inde-
pendent dataset. This is a widely used and powerful method, but the details
are beyond the scope of this chapter and readers are referred to central ref-
erences such as [7, 25] for further guidance.

Instead, we will take a brief look at how model parameterization can be
tackled, and then used for qualitative model comparison. From the two WN
models we have formulated, (14.1) and (14.9), we can generate four candidate
model structures for this disease: the minimalist model (14.1), two models of
intermediate complexity based on model (14.1) with either the larval or the
exposed mosquito class added, and the full model with both added classes
(14.9). Running numerical solutions can help us compare the predictions of
these four models.

Numerical simulation requires first that we obtain parameter values,
which can be derived from literature reports of field and laboratory stud-
ies (Table 14.2). The more recent studies are readily found through Internet
search engines; older studies, which are often gold mines of valuable data,
may require a little more legwork and library time. Often, we can find only a
mean and range of expected values for our parameters. The mean values give
us deterministic model simulations, and the ranges can be used in stochastic
simulations to evaluate the effects of natural variation and uncertainty in the
estimates (e.g., [43]).

Figure 14.4 shows numerical simulations of all four WN model structures
using the mean parameter values in Table 14.2. For a given set of initial
conditions, we can predict the densities of infectious mosquitoes, infectious
birds, and susceptible birds, over time following the introduction of a small
infectious inoculum to an otherwise entirely susceptible population. From
these simulations, we can see that the simplest model (14.1) has the fastest
dynamics and the earliest outbreak, and the most complex model (14.9) has
the slowest and latest (Fig. 14.4). Adding the larval class to model (14.1)
makes only the slightest difference in the outbreak timing, but adding the
exposed class to model (14.1) makes a substantial difference (Fig. 14.4).
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This type of preliminary qualitative model assessment should best be fol-
lowed by a rigorous quantitative comparison using maximum likelihood or
other evaluative techniques to see which model best fits the observed, inde-
pendent, outbreak data. Some of these methods are discussed for WN models
by [43]; more extensive commentary and methodology of model validation and
comparison are provided by [7,25]. For the remaining model analyses in this
chapter, we will use the full model with both larval and exposed mosquito
classes (14.9).
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Fig. 14.5 Connecting the WN model output to disease surveillance and control applica-
tions. The curved line shows the final proportion of surviving birds at the end of the season
as a function of the initial mosquito-to-bird density at the beginning of the season. For a
season with observed 50% bird mortality, the initial mosquito density can be inferred (1)
For a future season with a target bird survival of 90%, the required initial mosquito density
can be inferred in the same way (2) The ratio of these two initial mosquito densities (3)
gives the relative reduction in the mosquito population required to obtain the target level
of bird mortality. Adapted from [41] Fig. 3a

14.7 Model Application #1: WN Control

The model output from (14.9) presents a WN outbreak threshold in terms
of the relative densities of mosquitoes and birds at the DFE (14.11). How-
ever, this ratio would be extremely difficult to estimate on the ground. Can
the model output be better connected to real-life disease management? WN
surveillance programs typically track the number of dead birds throughout a
season, a datum that can be linked to the initial mosquito-to-bird ratio as fol-
lows. By running repeated numerical solutions starting from different initial
population densities at the DFE, a relationship can be plotted between the
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initial ratio of mosquito to bird densities, n∗
m, and the final disease-induced

bird mortality at the end of the season (Fig. 14.5). For a given level of mor-
tality observed at the end of the season, the initial value n∗

m can be inferred.
For future seasons, a target level of bird loss can be obtained by calculating
the required relative reduction in the mosquito population (Fig. 14.5).

14.8 Model Application #2: Seasonal Mosquito
Population

Our model is restricted to a single temperate North American season, during
which we assume the mosquito population density remains constant. More
realistically, however, the population will increase in spring and decline in
fall (Fig. 14.6a). How will this variation affect the model predictions? There
are a number of ways to tackle this question, from the simple to the complex
and from the analytical to the numerical. We will take a simpler approach
that will give us both analytical results and a useful graphical interpretation
(Fig. 14.6).

To pursue this analysis, we will have to put R0 to one side and introduce a
second major model analysis tool, the disease growth rate λ. Mathematically,
λ is the maximum real part of the eigenvalues of the ODE system linearized
around the DFE. It has the threshold value λ = 0, above which a disease
outbreak will occur and below which it will not. The parameters λ and R0

are related, in that the same threshold mosquito density n̂∗
m corresponds to

both R0 = 1 and λ = 0. An important difference between the two parameters
is that R0 is a dimensionless ratio with no time scale, whereas λ is a rate
with unit time−1. This feature is an advantage when we want to consider the
effects of different mosquito levels over time.

Note that the disease reproduction number R0 and the disease growth rate
λ are connected by the disease generation time, Tg, the mean time interval
between infection of a host individual and the secondary infections it causes,
such that λ = log(R0)/Tg.

Calculation of the disease growth rate is given in the Appendix. Its calcu-
lation introduces a slight change of notation that was partially introduced in
(14.6) and will prove more convenient for what follows. Specifically, the ratio
of the current mosquito density to the initial bird density, NM/NB∗ , becomes
nm, the ratio at the DFE, NM∗/NB∗ , becomes n∗

m, and the threshold ratio
for disease outbreak with a constant mosquito density is n̂∗

m.
Based on empirical observations, we will represent mosquito seasonality as

a simple step function (Fig. 14.6a), giving the mean relative mosquito density
over the season,

n̄m =
(
tana

m + tbn
b
m

)
/ (ta + tb) , (14.12)
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replotted here on a linear scale) shown with the dotted line can be represented crudely as

a step function from na
m to nb

m to na
m (solid line). Multiplying by the time spent at levels

a and b, periods ta and tb respectively, gives the mean mosquito density over the season,
n̄m (dashed line). (b) For a constant population, the relationship between the disease
growth rate λ and the initial mosquito density n∗

m is shown with the curved line. WN
outbreak occurs when λ > 0, i.e., when n∗

m > n̂∗
m. For variable mosquito density, the

linear relationship between the average growth rate λ̄ and the average initial disease-free
mosquito density n̄∗

m is given by the straight line L = La + Lb that connects points a
(na

m,λa) and b (nb
m,λb). A WN outbreak occurs when λ̄ > 0, i.e., when n̄∗

m > ˆ̄n∗
m. For a

given season, the point (n̄∗
m, λ̄) may be calculated from (14.12)–(14.13), or may be obtained

graphically as the point along L where the ratio between line segments La:Lb = ta:tb. As
long as the lower population density na

m < n̂∗
m, the threshold mosquito density for disease

outbreak will be higher for a seasonal than for a constant mosquito density. Adapted
from [41] Fig. 3b–c
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where ta and tb refer to the total time spent at population levels na
m and nb

m,
respectively (Fig. 14.6a). The mean disease growth rate is then given by

λ̄ = (taλa + tbλb) / (ta + tb) , (14.13)

where λa and λb are the largest eigenvalues of the Jacobian matrix J evalu-
ated at na

m and nb
m, respectively (Fig. 14.6b; see Appendix for details). This

gives a mean geometric growth rate for infective mosquitoes over the season
of eλ̄(ta+tb) = eλataeλbtb . Setting λ̄ = 0 in (14.11) gives the critical average
mosquito level, ˆ̄n∗

m > n̂∗
m, above which WN can invade a seasonally variable

population and below which it cannot (Fig. 14.6b). Provided the lower of
the two mosquito population levels, na

m, is below the threshold n̂∗
m, disease-

outbreak control requires only that the higher level, nb
m, be reduced such that

the average mosquito density n̄∗
m < ˆ̄n∗

m. We therefore expect WN virus to be
easier to control in more seasonal northern regions than in warmer southern
regions where the population remains constant above n̂∗

m year-round.

14.9 Summary

In its simplest form, a model can be thought of as a “black box” which takes
inputs, such as parameters and initial conditions, and produces outputs, such
as disease thresholds, or outbreak levels over time. The conversion from inputs
to outputs requires underlying hypotheses about the dynamical relationships
between components. These hypotheses are then translated into equations,
whose subsequent analysis and simulation yield the model outputs.

As mathematicians we often focus on the details of the black box, fixing the
set of model equations, and deriving sophisticated methods for determining
the model outputs. This chapter suggests an alternative and complementary
activity: analysis of the role of inputs (parameters) and hypotheses (formal-
ized into model structure) in determining the model outputs. Such analyses
employ a suite of different models, with uncertain parameters and variable
structure. The effects of the parameter uncertainty and model structure on
the model outputs (such as predictions of R0) are then deduced.

We believe that this kind of comparative analysis approach is key for
scientists wishing to interface biology with mathematical models, particularly
in the area of epidemiology. The goal of this chapter is to demonstrate both
the methods and the usefulness of the comparative analysis approach.

Our series of models describes the cross-infection of West Nile virus be-
tween birds and mosquitoes. The primary mathematical tool is the basic
reproduction number R0, which is derived from mathematical epidemiology
as the spectral radius of the next generation operator [42]. We calculate
how R0 changes with differences in the disease transmission term (frequency



14 A Comparative Analysis of Models for West Nile Virus 385

dependence versus mass action, Sect. 14.4), with additional model classes (lar-
val and exposed mosquito classes, Sect. 14.5) and with uncertain and variable
parameters (Sect. 14.6). Finally, we make two applications of the model, one
to WN virus control (Sect. 14.7) and one to outbreaks in seasonal environ-
ments (Sect. 14.8).

The calculation of R0 for the frequency-dependent and mass-action trans-
mission term models shows a striking dependence of the model predictions
on model structure. Although both transmission term models have a sound
theoretical basis, they yield starkly contrasting predictions as to the effect
of bird density on WN virus. When bird densities are low, the frequency-
dependent model predicts remaining birds receive more bites and become
local hot spots for disease transmission, with each bird having a high prob-
ability of becoming infected and passing on the virus. By way of contrast,
the mass-action model predicts the disease will die out in regions of low bird
density. Thus, while the mass-action model predicts that bird control would
be effective in controlling WN, the frequency-dependent model predicts that
it would be counterproductive (see [31] for further discussion).

The calculation of R0 for models with larval and exposed mosquito classes
shows how the added complexity of a more realistic model does not always
translate into refined model predictions. Here an additional larval class has no
effect on the basic reproduction number, and hence on whether an outbreak
will occur. Interestingly, the additional larval class does actually change the
time-dependent dynamics if an outbreak actually occurs (Fig. 14.4). By way
of contrast, the additional exposed class means that some infected mosquitoes
may be removed before ever making it to the infective state. As our intuition
would lead us to believe, this yields a reduced R0.

Our experience shows that parameterization of epidemiological models is a
substantial task, requiring great familiarity with the biological literature. For
example, the parameters shown in Fig. 14.2 (taken from [43]) originally came
from 25 different sources, each of which had to be carefully read before the
parameter could be extracted. However, as shown in Fig. 14.3, careful model
parameterization allows us to incorporate the uncertainty of parameter values
into ranges of predictions for R0, following the methods of [5]. In the case of
WN virus models, variation in R0 arising from model structure was larger
than variation arising from parameter uncertainty.

Finally, once a model is tested, via parameterization, validation and multi-
model comparison, it is possible to make applications to different epidemio-
logical scenarios. How can a disease be controlled? How is control managed in
a seasonal mosquito population? These applications sometime require model
extensions (Fig. 14.6) and unique perspective on model outputs (Fig. 14.5).
However, it is the applications that allow us to move the science forward
and, more often than not, the applications also lead to a new generation of
models that promise to keep mathematicians employed for considerable time
to come.
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Appendix

We include this appendix to illustrate a different approach to calculating the
disease growth rate, λ, for the full West Nile model (14.9). Although this
exercise is somewhat redundant with the earlier R0 calculations, it provides
an alternative and pedagogically useful perspective.

We use linear analysis to calculate the disease growth rate for the two-
level mosquito population shown in Fig. 14.6a. To simplify the ODE system
(14.9), we non-dimensionalise by scaling time t with the quantity 1/κ by
setting τ = κt, scaling all parameters to κ, and scaling the bird and mosquito
densities by the initial bird density N∗

B . In the resulting dimensionless system
(14.14), the two bird compartments sb and ib indicate the fraction of the
initial bird density in susceptible and infected classes, with the total live bird
density 0 ≤ nb = (sb + ib) ≤ 1. The four mosquito compartments lm, sm, em,
and im, represent larval, susceptible, exposed, and infected females scaled to
the initial bird density, with the total female mosquito population density
0 ≤ nm = (lm + sm + em + im). The rescaled system is:

dsb

dτ = −αbβbim
sb

nb
dib

dτ = αbβbim
sb

nb
− δbib

dlm
dτ = bl (sm + em + im) − mllm − dllm

dsm

dτ = −αmβbsm
ib

nb
+ mllm − dmsm

dem

dτ = αmβbsm
ib

nb
− em − dmem

dim

dτ = em − dmim

(14.14)

where the subscripts b and m indicate the dimensionless versions of the di-
mensional variables and parameters defined in Tables 14.1 and 14.2. As in
the dimensional system, we ensure a constant mosquito population density
by setting bl = dm(ml + dl)/ml.

For the DFE for this system, (sb, ib, lm, sm, em, im) = (1, 0, bln
∗
m/(ml+dl),

n∗
m, 0, 0), we define small perturbations in each variable, (s̃b, ĩb, l̃m, s̃m, ẽm,

ĩm). The corresponding Jacobian matrix, J , describes the linearization with
respect to (̃ib, l̃m, s̃m, ẽm, ĩm):

J =

⎡

⎢
⎢
⎢
⎢
⎣

−δb 0 0 0 αbβb

0 −ml − dl bl bl bl

−αmβbn
∗
m ml −dm 0 0

αmβbn
∗
m 0 0 −dm − 1 0

0 0 0 1 −dm

⎤

⎥
⎥
⎥
⎥
⎦

. (14.15)

(The term s̃b is not included because it decouples from the rest of the system;
in other words, the 6 × 6 matrix that includes s̃b has an entire column of
zeroes.) This yields the characteristic polynomial in λ:
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0 = Det(J−λI) = λ

(

λ + dm +
mlbl

dm

)

(λ3 + a1λ
2 + a2λ + a3), (14.16)

where I is the 5 × 5 identity matrix and a1 > 0, a2 > 0. The zero root of the
5th order polynomial comes from the steady-state condition bl = dm(ml +
dl)/ml that means the disease-free mosquito population is constant. For
a3 > 0, and a1a2 > a3, by the Roth–Hurwitz conditions, all roots of the
cubic polynomial in λ have negative real parts. Some algebra shows that
a1a2 > a3, since

a1 = 1 + δb + 2dm

a2 = d2
m + 2δbdm + δb + dm

a3 = δbd
2
m − αbαmβ2

b n∗
m + δbdm

. (14.17)

The disease outbreak threshold is thus when a3 = 0 or equivalently, when
zero is the largest eigenvalue of J . In biological terms this threshold may be
thought of as a disease growth rate of zero, which corresponds directly to the
reproduction number threshold, R0 = 1.

Table 14.1 Variables for West Nile virus model. Subscripts M and m refer to mosquitoes
and B and b to birds; capital letters refer to dimensional forms and lower case to nondi-
mensional forms, which are rescaled to N∗

B . Dashes indicate term not used

Meaning Dimensional Dimensionless

Mosquitoes
Larval female mosquito density LM lm
Susceptible adult female mosquito density SM sm

Exposed adult female mosquito density EM em

Infectious adult female mosquito density IM im
Total female mosquito density, NM nm

NM = LM + SM + EM + IM

Total female mosquito density at the N∗
M n∗

m

disease-free equilibrium

Threshold mosquito density for disease N̂∗
M n̂∗

m

outbreak, given constant population
Average mosquito density across a season, – n̄m

given variable population
Average mosquito density – n̄∗

m

at the disease-free equilibrium
Threshold average mosquito density for – ˆ̄n∗

m

disease outbreak, given variable population

Birds
Susceptible bird density SB sb

Infectious bird density IB ib
Total bird density NB = SB + IB NB nb

Bird density at which frequency dependent and ÑB –
mass action disease-transmission terms coincide,
giving identical mosquito biting rates
Total bird density at the disease-free equilibrium N∗

B 1
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